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E X A M P L E S  OF SPACES (1 < p # 2 < oo)* 

BY 

G. SCHECHTMAN 

ABSTRACT 

We present a simple method for constructing new . ~  spaces (1 < p #  2 < ~) 
out of old ones. Using this method and results of H. P. Rosenthal we prove the 
existence of a sequence of mutually nonisomorphic separable infinite dimen- 
sional ~p spaces (1 < p #  2<~) .  

1. Introduction 

Since the theory of ~p spaces was introduced in [3], [5] it was an open 

problem whether there exist infinitely many mutually nonisomorphic separable 

infinite dimensional ~p spaces (1 < p #  2<oo) (The case p = 1 was solved in 

[2]). The purpose of this paper is to solve this problem. 

THEOREM. There exists a sequence of mutually nonisomorphic, separable, 
infinite dimensional ~p spaces (1 < p # 2 < 2). 

The only knowledge required from the theory of ~ spaces is the fact proved 

in [3], [5] that X is a separable ~p space (1 < p # 2 < ~ )  if and only if it is 

isomorphic to a complemented subspace of L,(I) (I = (0, I)) and it is not 

isomorphic to 12. 

The proof of the theorem is carried out by introducing a very simple method 

to construct new Z#o spaces out of old ones and combining this method with 

results of H. P. Rosenthal [9] concerning the span in Lp of a sequence of 

independent random variables. 

The notations are standard and those which are not explained here can be 

found in [6]. 

* This is part of the author's Ph.D. thesis written at the Hebrew University of Jerusalem under 
the supervision of Professor J. Lindenstrauss. The author wants to thank Professors J. Linden- 
strauss and L. Tzafriri for their interest and for helpful discussions concerning the material of this 
paper. 
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We only mention that (r~)7=, is the sequence of the Rademacher functions. 
I denotes the unit interval. 

K 

The symbol ~ ( ~ ) denotes inequalities in both sides with constants which 

do not depend on the scalars (respectively - with constants K and K- ' ) .  

2. Preliminaries 

DEFINITION. Let (X~)~'=~ be a finite sequence of subspaces of L~(I) 

( l -<p  < ~ ) ;  we define X, Q X 2 Q . . . Q X ~  = @~_)X~ to be the closed linear 

span in L,(1 ~) of functions of the form ( x ) ~ " ' Q x ~ ) ( t , , t 2 , . . . , t n ) =  

x)(tO, x2(t2). . .x,(t ,);  x, E X~. (This definition coincides with the completion of 
the usual tensor product in a certain norm.) 

LEMMA I. Let X~ i=  1 , 2 , . . . , n  be complemented subspaces o[ Lp(I) 
(1 _-<p < ~ ) ;  then Q~=, X~ is complemented in Lp(I~). 

LEMMA 2. Let Xi, Y,  i=  1 , 2 , . . . , n ,  be subspaces of Lp(I) and let 
T~:X~--~Y~ be isomorphisms onto, i = l , 2 , . . . , n .  Then @~=)T~:@7.~X~ 

o n t o  

' ~7-, Y~ is an isomorphism. 

LEMMA 3. Let X, i =  1 , 2 , . . . , n ,  be subspaces of Lp(l) (1 _---p < ~ )  with 
unconditional bases ~ ~ respectively. Then (xj)j=t, i = 1 , 2 , . . . , n  

X n ~ n (x], Qx~2(~""  ~')i,. ,J.=, constitutes an unconditional basis for Q,_, X~. 

Lemmas i and 2 are well known and easy to prove. Let us just mention that 
onto 

if, for example, n = 2 and P~ : Lp (I) ) X~, i = 1,2, are the given projections in 

Lemma 1 and if k(u, v) is a continuous function then the projection of k into 

Xt t~)X2 is given in the following way. Fix v and let h ( . ,  v) be P~(k(., v)). Now 

consider h(u, v) as a representing function of its equivalent class; then for 

almost every u E I, h(u,. )E  Lp(l). Apply P2 to this function. 

PROOFOF LEMMA 3. The proof is carried out by induction. We shall consider 

only the case n = 2. The induction step is carried out in a similar manner. 

It is obvious that span [(x '~ @ x ~)~ ~] = Xm @ X2. Now by the unconditionality 

of (x',),_,, (x~)7_,, by the generalization of Khinchine's inequality for expres- 

sions of the form f~f~l ET.j_~ b,.~r~(t)rj(s)IPdtds and by Fubini's theorem we get 
that for all scalars (a~.j)~,j=), 
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| I'-- fo fol I" 

~fo'fo'fo'l,~. a,,x',,,x,,,,r,,u, "a.atas 

~ ' f o ' s  

~ fo' fo' ( i ~ ,  l a , . i x ' ( t , x ' ( s )  l=)'l=dtds. 

Thus, (x ~ @ x ~)~.j=, consti tutes an unconditional basis. �9 

PROPOSITION 1. Let  1 <= p < r, < r2 < �9 �9 �9 < r, <= 2 and  let Xi, i = 1,2, �9 �9 n, be 

subspaces  o[ Lp ( l )  such that  X~ is i somorphic  to l.,, i = 1 , 2 , . . . ,  n. Then the 

natural  basis o f  ~ = ,  X~ is equivalent  to the natural  basis o f  the space:  

X ( r , ,  r2 , . . . ,  r ,)  = {(a,,.... ,.)7,... , . . , ;  II (a ,,....,.) II 

(i1~1 (i2~__1... (i._~l., (i~l l ai,....d.i,)r._.,/,.),._g,._,... )r,;r~)11,,I " 

PROOF. By Lemma 2 one can assume without loss of  generality that for  all 

i = 1,. �9 n, X, is spanned by independent random variables (x;)~*.,, each being 

r~ stable. Thus, for all t < r ,  (x~)7-, is equivalent to the usual basis of l,,. (For the 

definition and properties of r-stable random variables see e.g. [9].) 

We shall prove the proposition by induction. For n = 1 there is nothing to 

prove. Assume that the proposition is true for n = k - 1 and all 1 =< p =< 2, then: 

a ; , . . ; ~ x ~ , @ "  x k 
il," ~1 

= dt, dtk fo'...fo'l,,~= a,, ,,xl,(t,)...xr,(,)t" . . .  

r fo,  r " ~  

i - I i2," ",ik ~ ] 
a P 

ai,..ikx~2(t2) k 1") ~/'' �9 . " �9 x ik(t~) dr2. .  �9 dt~ 

I r l  ~ P l r l  
a ;,..i, x ~(t2)" k t . .  �9 " �9 x,~(~) dt2 dtk} 

(We used the fact that [ ( s )  = s p;'' is concave and the induction hypothesis for  

r~ instead of p.) 
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On the other hand we get by the induction hypothesis and the generalization 

of the triangle inequality to integrals (instead of sums) that: 

l k  P a,,. . ,~x , ,@"' |  
I I [ 

f ' f '2  
. . . .  a , , . . . ,~x] , ( t , ) ' . .x~( tk)  d t , . . . d t k  

) ) i I . ' "  , i k  I 

~'  I ,~  (a i,..~ x ~(tk )) I[~,, . . . . . . . . . .  )dtk 

a, ...... ~x~(  k) dtk 
) i ~ I X ~ r I / p - r 2 / p , ' " , r k  I / P )  

X ( r l / P , ' " . r k  I / P )  

3. Proof of the theorem 

We shall need the following: 

PROPOSITION 2. I.et p < r < s <-2. Then there does not exist a sequence 

(x,.j)Sj~, of  independent random variables on (0,1) such that the (Xl.i)7.j=, 

considered as elements in Lp(I)  are equivalent to the usual basis o f  

(I, @l,  0 " "  "), = X ( r , s ) .  

We shall assume the validity of Proposition 2 for the moment and pass to the 

PROOF Or: THE THEOREM. It is clearly sufficient to prove the theorem for the 

case i < p < 2 .  

Let Xp be Rosenthal's space ([8], [9]). Then there exists a sequence (x07=, of 

independent symmetric 3-valued random variables in Lp(I) that constitutes a 

basis for Xp. It is known ([8], [9], [10]) that Xp is complemented in Lp and it 

contains an isomorph of Ir for each p < r =<2; thus X ~  = Xp ~ . . . @ X p  (n 

times) contains an isomorph of L, @ 1~ ~ -  -- ~ It. for all p < r~ < r2 < �9 �9 �9 < r, _-< 

2. 
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We shall prove  by induction that X ~  ~ does not contain an isomorph of 

It, @ .  �9 �9 @ l,~ for any p < r~ < �9 �9 �9 < r,, =< 2. This will imply that X ~  TM is not 

isomorphic to a subspace  of ~* ~ X~| X~ , k < n ,  and thus X~, X ~ ,  X ~ , . . .  

consti tutes a sequence of infinite dimensional,  separable,  mutually 

nonisomorphic  Zep spaces.  

The case n = 1 follows immediately f rom Proposit ion 2 and the simple fact  

that the usual basis of (/, O l ,  0 " "  ")~ is reproducible in the sense of [4]. 

Assume that the assert ion above  is true for n = k - I  and assume that 

It, |  " " | I.~ is isomorphic to a subspace  of X ~  where p < r~ < �9 �9 �9 < r2, --< 2. 

Let  (y,,.....,~)~, ... ,~,=, denote  the image under this i somorphism of the usual basis 

of t,,| @t,,. 
Let  

Let  

and 

: N ~ N x N be onto and one to one. 

OhiO 

Pm: X ~  k , Ix,, @ " "  | x,~ 1,7.-.-.,, -, 

o n t o  

Om: X ~  , [x,, @ " "  @ x,, ]7,.....,k -m § 

be the natural projections.  

It is known [8] that Xp is isomorphic to Xp E) X~. Thus,  X ~  *-'J is isomorphic  

v~' ..... O X ~  ~-'~ for each l. Hence,  for  each rn, ( I -  Q,~)X~ k, being isomor-  to  ~ ,=l  

phic to a finite direct sum of copies of X ~  k - ' ,  is isomorphic to a subspace  of 

X~k-,. 
Let  (e,)7=, be a decreasing sequence tending to zero. Choose  z , E  

[y~,,.,,.....,2,]7,..-.,2,-,, Ilz, II : 1. There exists an m, such that 1 [ ( I -  Pro,)z, II < e,. 

Y2 = [Y~(2).,,.....j?,.....,2k-, is isomorphic to l ,  @ . - - Q  l.~ and thus, by the induc- 

tion hypothesis  and the fact  mentioned above  that ( I  - Qm,) X ~  is isomorphic  

to a subspace  of ..pY~-'~, it follows that ( I  - Q,,)lr~ is not an isomorphism.  Thus 

there exists  a zz ~ Y2 such that II z~ll = 1 and [1 ( l  - Q,,,)z~ll < e#2.  Choose  now 

m:, m2 > m,,  such that l id  - P,.~)z.-[I < ez/2. 
Continuing this way we get a sequence (z,)7=, such that ]lz, [I = 1 and 

z,E[y~(tx,,.....d~.....,~=,, l = l , 2 , . . . , a n d  an increasing sequence (m,)7., of 

natural numbers  such that (Q~o = 0) 

II (z  - 0 , . ,_ , )  z, II < ~ , / 2 ;  II ( I  - P . , )  z, II < ~ , / 2 ,  t = l ,  2 , .  �9 . .  

Clearly if the et are small enough then the sequence (zt)7-, is equivalent  to 

(Q,, ,Pro,z,)7-,. On the other hand it is easy to see using Proposit ion 1 that, since 
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z~ ~ [y ~,,,,.....jT,.....,,, =,, the sequence (z~)7., is equivalent to a permutation of the 

usual basis of 1,,@1.:. Observe also that (Q.., ,P,.,z,)._, is a sequence of  

independent random variables and this contradicts Proposition 2. This con- 

tradiction concludes the proof of the induction step and thus the proof  of the 

theorem�9 �9 

�9 ~ 2~ REMARK 1 It is easy to show that the fact that in the sequence ( X ~ ) ~ - o  

each member is not isomorphic to a subspace of its previous ones implies that 

the same is true for the whole sequence ( X . ) . . , .  Indeed assume that n < m 

and X ~ "  is isomorphic to a subspace of X~,  then for all k _-> 0, X~| .zs 

isomorphic to a subspace of y~t.+(~+,)..-.)j= ~.~[..+~..-.)] By induction, it 
~(@[m+k(m-n)l follows that for every k _-> 0, . . .  is isomorphic to a subspace of X~| 

Now choose natural numbers s, t, k such that n _-<2"<2'_---m + k ( m -  n). 

Then we get that ...x "| is isomorphic to a subspace of X ~  ''. 

DEFINITION. Let  1 _--< p < ~, e > 0. A sequence (xi).-, of independent random 

variables in L~ (I) is said to be (p, e)- equi-distributed if there exists a sequence 

(z,)7'=, of  equi-distributed simple independent random variables such that 

In the proof of Proposition 2 we shall use the following simple and essentially 

well known 

LEMMA 4. Let l<=p <o% e >0  and let (x~)7=, be a sequence o[ p-equi- 

integrable independent random variables in Lp(l). Then there exists a subse- 

qltence (x,.)~=, of  (x,)7=~ which is (p,e)-equi-distributed. 

Recall that a sequence (x,)7_, C Lp(l)  is p-equi-integrable if for  every  e > 0 

there exists an N so that fa, Ix, (t)lPdt < e, for  all i, where A, = {t ; Ix, (t)  I --> N}. 

PROOF OF LEMMA 4. Let N be such that 

f~ Ix,(t)lPdt < e  ~ n = 1 , 2 , - . .  
Ixn(t)l~N} 

Divide the interval [ - N , N )  into a finite sequence of disjoint intervals 

(I,)~z~=([a,,b,))f.~ of diameter  at most e. Let  6 > 0  be such that A ( A ) < 6  

implies fA Ix, (t) I p dt < e ~/k, where A denotes the Lebesgue measure on the unit 

interval�9 There exists a subsequence (x,,)7.~ of (x,)~=~ and numbers a,, 

i = 1,2,- .  ",k, such that 

A (x., 5 / , )  �9 ai 
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and 
[,~ (x., E I , ) - ~ ,  [ < 8/2.  

Let  fli = a , - 8 ] 2 ,  i = 1 , 2 , . . . , k .  Then for each l, 

fl, + 8  > ~(x,, E I,) > fl,. 

Define random variables z.,, 1 -- 1,2,.  �9 in the following manner: z., equals ai 

on a set A'~ contained in (x., E I~) of measure fl,, i = 1 , 2 , . . . ,  k, and z., equals 

zero on I \  I._./~,AI. One can easily show that  the z., can be chosen to 

be independent.  (One can assume without loss of generality that  the x. are 

defined on I ~~ and x. depends only on the n th coordinate. The z., can be chosen 

then to depend on the ntth coordinate only.) 

Now, all the z., have the same distribution and 

f, 'L - < I x . ,  I" Izn,-x.,l"+ I x . , l "  If:n, x . ,7= ,= ,  I , = ,  

k 

<__ e ~ + e ~ + ~ e~ lk  = 3 . e  ~ 
i=1 

Thus (x~,)7=~ is (p, 3 '/p. e)-equi-distributed.  �9 

PROOF OF PROPOSITION 2. Assume that (x~.~)~-, is a sequence of independent 

random variables which is equivalent to the usual basis of (l, ~:)l, E) '"  "L, i.e. 

there exists a K such that 

[xi.~]~=~ does not contain an isomorph of lp and thus (xi,j)~=, is p-equi-integrable 

(cf., e.g. [1]). By passing to a subsequence of (x~,j)T~, for  each i one can assume 

without loss of generality that (x~,j)T=, is (p, 2- ')-equi-distributed. Moreover ,  by 

the reasoning used in the .proof  of Lemma 4, we may assume also that  there 

exist simple independent random variables (z~,~)7.j~, such that IIz,,~-x,,j II < 2-', 
i , j  = 1 , 2 , . . . .  

By using Lemma 4 repeatedly and then the diagonal procedure it follows that 

there exists a subsequence (xi~,,)~=, of (x~.,)~=, such that (x,~.,)~=~ is (p, 2-=)-equi - 

distributed, i.e. for each m = 1 , 2 , . . .  there exists a sequence of simple 

equi-distributed independent random variables (w,~,)~=~ such that IIw,~,,- 

x~.., II ~ 2-m, n = m, m + 1,. �9 ..We assume also that the (w~,,)~=,~ are independent 

of (x~.j,z,,j)~'-,.7=2, and that i~ -- n, n = i , 2 , - . . .  

It is well known and simple to prove (see for example [9]) that if x, x,, y are 

simple random variables such that dist x = dist y then there exists a random 
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variable y, such that d i s t ( x . x O - - =  dist (y, y,). Thus. for each m, m =< i and 2 =<j 
-) " " such that dist (z,.,w?.,) = dist (z~,, w,., . The w~.j we can find a random variable ~ ,, 

can clearly be chosen so that for every m the variables (w~.~),~,..~-, are 

independent.  

Now. for all j. m ~ 1 . 2 . . . .  and i = m , m  + ! . . - - ,  

[[ w,.'~ - x,.~ [i -<- 11 ~,',."~ -- z,.~ i[ + [I z, . ,  - x ,  li 

= JI w Z, - z , . ,  II + H z,.,. - x, . ,  1! 

-<-II w,7,-- x,., II § I !x , . , -  z,., 11 + II z,.~ - xi ,  II--<- 3" 2-" 

Fix an integer I, a permutat ion rr of ( 1 , 2 . . . . . I ) •  and scalars 

(a,., )[.,_ ,. W e  shal l  show that 

Ii + II ll I! ~ . a  a i . j X i , i  ~ a , , , , i ) x i , j  . 
i . I  I i .  1 = I 

This will imply that (x~.~)~,_, is a symmetr ic  basic sequence which is a 

contradict ion to the fact  that it is equivalent  to the usual basis of 

(t, ~ t ,  |  
For each m = 1 ,2 , - . .  

,.~-, a,.jx,.i ~ ll,.j_, a , . , x~ . , . ,~ . ,  . 

The difference between the last expression and II~.,=, a . . , w ~ , . . , , l l  is less 

than or equal to 3 . 2 - "  ZI.~I J ai., I which by enlarging m can be made as small as 
we wish. 

The same considerat ions hold for IIE~. , - ,a , , . , ,x , . i  II and 

(The last equality follows f rom the equi-distribution of the w~.) This concludes 

the proof  of  the proposit ion.  I I  

REMARK 2. Professor  H. P. Rosenthal informed the author that he has also 

proved this proposit ion (unpublished). The proof  of Rosenthal involves the 

following two steps: (1) For r < s ( l ,  O l , ~ . . ' ) ,  is not a modular  sequence;  

(2) The span of a sequence of independent  random variables in Lp is 

isomorphic to a modular  sequence space (cf. [10] for the notion of modular  

sequence space). 
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4. Remarks and open problems 

We first wish to give concrete representation to some of the spaces which 

can be constructed by the method of Section 2. 

(a) If X, Y are subspaces of L~(I) (1 =< p < ~) and Y is isomorphic to lp then 

X Q  Y is isomorphic to ( X O X O "  ")~. 
(b) If X, Y are subspaces of Lp (I) and X is isomorphic to 12 then X ~) Y is 

isomorphic to Rad(Y) (cf. [7]). If in addition Y has an unconditional basis 

(yl)?-~ then X ~ ) Y  is isomorphic to (12~)l~E)"-)~,~ i.e. to the space of all 

sequences (a~.j)~.j_, with 

[l(a,.j)~j=, II = Ill a,., I ~ Y, I11 < ~ 

where Ill  Ill is an equivalent norm on Y in which (y,),=, has unconditional 
constant one. 

(c) Fix p > 2 and let w = (w,)•_, be a positive sequence satisfying w~ ---~0 and 

X?=~ w~ "/~p 2~= ~. Let Xp.. be the space of all sequences (a,)?=, with 

I w 2,)" 
/ 

It is known that X~.. is isomorphic to a complemented subspace Y,.~ of L~(I) 
([8]). Moreover Xp.~ is isomorphic to the conjugate of X~ (p- '  + q- '  = 1) which 

appeared in the proof of the theorem. 

It is quite simple to prove that the natural basis of Yo.*~ is equivalent to the 

natural basis of the space of all sequences (a~.i)~.~ with: 

I[(a'.')l]= , , [ a ' . ' l P + .  ]a,.,rwJ] 

+i~_l(~=l]a,.,[2wQt"2+( =i~= lai.jl 2wiw:) ] . 2  Xp,21", 

This fact has a natural generalization to Y ~ .  We do not write it explicitly to 

avoid clumsiness of notations. 

REMARK 3. Let p > 2. All the previously known separable ~p spaces except 

Lp(I) itself are isomorphic to a subspace of (t2~12~)...)~. This latter space 

has the property that it is isomorphic to the square (in the sense of @) of itself. 

Thus by the method we introduced one cannot "come out"  of (12 ~)12 ~) ' . . )~ .  
This raises the following: 

PROBLEM I. Does there exist a separable ~p space (p > 2) which is neither 

isomorphic to Lp(I) nor to a subspace of (l: ~)12 0 " "  ")p ? 
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From our construction it follows only that X~" is an ~p.,., space where 

f(n) , ~. This raises: 

PROBLEU 2. Does there exist a K > I such that there exist infinitely many 
isomorphic types of separable, infinite dimensional ~.,r spaces? 

This problem is obviously connected with: 

PROBLEM 3. Let I =<p < ~ ,  p ~  2. Are there uncountably many mutually 
nonisomorphic, separable ~p spaces? 
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